Predicting the accuracy of protein-ligand docking on homology models
نویسندگان
چکیده
Ligand-protein docking is increasingly used in Drug Discovery. The initial limitations imposed by a reduced availability of target protein structures have been overcome by the use of theoretical models, especially those derived by homology modeling techniques. While this greatly extended the use of docking simulations, it also introduced the need for general and robust criteria to estimate the reliability of docking results given the model quality. To this end, a large-scale experiment was performed on a diverse set including experimental structures and homology models for a group of representative ligand-protein complexes. A wide spectrum of model quality was sampled using templates at different evolutionary distances and different strategies for target-template alignment and modeling. The obtained models were scored by a selection of the most used model quality indices. The binding geometries were generated using AutoDock, one of the most common docking programs. An important result of this study is that indeed quantitative and robust correlations exist between the accuracy of docking results and the model quality, especially in the binding site. Moreover, state-of-the-art indices for model quality assessment are already an effective tool for an a priori prediction of the accuracy of docking experiments in the context of groups of proteins with conserved structural characteristics.
منابع مشابه
Protein Kinases: Docking and Homology Modeling Reliability
A database of about 700 high-resolution kinase structures was used to test the reliability of 17 docking procedures (using six docking software packages) by means of self- and cross-docking studies. The analysis of about 80 000 docking calculations suggests that the docking of an unknown ligand into a kinase has a probability of only 30-37% to be a correct ligand pose. However, based on the hyp...
متن کاملQ-DockLHM: Low-resolution refinement for ligand comparative modeling
The success of ligand docking calculations typically depends on the quality of the receptor structure. Given improvements in protein structure prediction approaches, approximate protein models now can be routinely obtained for the majority of gene products in a given proteome. Structure-based virtual screening of large combinatorial libraries of lead candidates against theoretically modeled rec...
متن کاملQ-Dock: Low-Resolution Refinement for Ligand Comparative Modeling
The success of ligand docking calculations typically depends on the quality of the receptor structure. Given improvements in protein structure prediction approaches, approximate protein models now can be routinely obtained for the majority of gene products in a given proteome. Structure-based virtual screening of large combinatorial libraries of lead candidates against theoretically modeled rec...
متن کاملExpression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus
Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...
متن کاملNonlinear Scoring Functions for Similarity-Based Ligand Docking and Binding Affinity Prediction
A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational chemistry
دوره 32 1 شماره
صفحات -
تاریخ انتشار 2011